Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Funct Integr Genomics ; 24(1): 23, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305949

RESUMO

With recent advances in precision medicine and healthcare computing, there is an enormous demand for developing machine learning algorithms in genomics to enhance the rapid analysis of disease disorders. Technological advancement in genomics and imaging provides clinicians with enormous amounts of data, but prediction is still mostly subjective, resulting in problematic medical treatment. Machine learning is being employed in several domains of the healthcare sector, encompassing clinical research, early disease identification, and medicinal innovation with a historical perspective. The main objective of this study is to detect patients who, based on several medical standards, are more susceptible to having a genetic disorder. A genetic disease prediction algorithm was employed, leveraging the patient's health history to evaluate the probability of diagnosing a genetic disorder. We developed a computationally efficient machine learning approach to predict the overall lifespan of patients with a genomics disorder and to classify and predict patients with a genetic disease. The SVM, RF, and ETC are stacked using two-layer meta-estimators to develop the proposed model. The first layer comprises all the baseline models employed to predict the outcomes based on the dataset. The second layer comprises a component known as a meta-classifier. Results from the experiment indicate that the model achieved an accuracy of 90.45% and a recall score of 90.19%. The area under the curve (AUC) for mitochondrial diseases is 98.1%; for multifactorial diseases, it is 97.5%; and for single-gene inheritance, it is 98.8%. The proposed approach presents a novel method for predicting patient prognosis in a manner that is unbiased, accurate, and comprehensive. The proposed approach outperforms human professionals using the current clinical standard for genetic disease classification in terms of identification accuracy. The implementation of stacked will significantly improve the field of biomedical research by improving the anticipation of genetic diseases.


Assuntos
Setor de Assistência à Saúde , Aprendizado de Máquina , Humanos , Algoritmos , Bases de Dados Genéticas , Genômica
2.
Artigo em Inglês | MEDLINE | ID: mdl-38051606

RESUMO

Object counting, defined as the task of accurately predicting the number of objects in static images or videos, has recently attracted considerable interest. However, the unavoidable presence of background noise prevents counting performance from advancing further. To address this issue, we created a group and graph attention network (GGANet) for dense object counting. GGANet is an encoder-decoder architecture incorporating a group channel attention (GCA) module and a learnable graph attention (LGA) module. The GCA module groups the feature map into several subfeatures, each of which is assigned an attention factor through the identical channel attention. The LGA module views the feature map as a graph structure in which the different channels represent diverse feature vertices, and the responses between channels represent edges. The GCA and LGA modules jointly avoid the interference of irrelevant pixels and suppress the background noise. Experiments are conducted on four crowd-counting datasets, two vehicle-counting datasets, one remote-sensing counting dataset, and one few-shot object-counting dataset. Comparative results prove that the proposed abbr achieves superior counting performance.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37708019

RESUMO

Changing the human being's lifestyle, has caused, or exacerbated many diseases. One of these diseases is cancer, and among all kind of cancers like, brain and pulmonary; lungs cancer is fatal. The cancers could be detected early to save lives using Computer Aided Diagnosis (CAD) systems. CT scans medical images are one the best images in detecting these tumors in lung that are especially accepted among doctors. However, location and random shape of tumors, and the poor quality of CT scans images are one the biggest challenges for physicians in identifying these tumors. Therefore, deep learning algorithms have been highly regarded by researchers. This paper presents a new method for identifying tumors and pulmonary nodules in CT scans images based on convolution neural network algorithm with which tumor is accurately identified. The active counter algorithm will show the detected tumor. The proposed method is qualitatively measured by the sensitivity assessment criteria and dice similarity criteria. The obtained results with 98.33% accuracy 99.25% validity and 98.18% dice similarity criterion show the superiority of the proposed method.

5.
Artigo em Inglês | MEDLINE | ID: mdl-37436856

RESUMO

In the absence of sufficient labels, deep neural networks (DNNs) are prone to overfitting, resulting in poor performance and difficulty in training. Thus, many semisupervised methods aim to use unlabeled sample information to compensate for the lack of label quantity. However, as the available pseudolabels increase, the fixed structure of traditional models has difficulty in matching them, limiting their effectiveness. Therefore, a deep-growing neural network with manifold constraints (DGNN-MC) is proposed. It can deepen the corresponding network structure with the expansion of a high-quality pseudolabel pool and preserve the local structure between the original and high-dimensional data in semisupervised learning. First, the framework filters the output of the shallow network to obtain pseudolabeled samples with high confidence and adds them to the original training set to form a new pseudolabeled training set. Second, according to the size of the new training set, it increases the depth of the layers to obtain a deeper network and conducts the training. Finally, it obtains new pseudolabeled samples and deepens the layers again until the network growth is completed. The growing model proposed in this article can be applied to other multilayer networks, as their depth can be transformed. Taking HSI classification as an example, a natural semisupervised problem, the experimental results demonstrate the superiority and effectiveness of our method, which can mine more reliable information for better utilization and fully balance the growing amount of labeled data and network learning ability.

6.
Artigo em Inglês | MEDLINE | ID: mdl-37436867

RESUMO

Millions of individuals around the world have been impacted by the ongoing coronavirus outbreak, known as the COVID-19 pandemic. Blockchain, Artificial Intelligence (AI), and other cutting-edge digital and innovative technologies have all offered promising solutions in such situations. AI provides advanced and innovative techniques for classifying and detecting symptoms caused by the coronavirus. Additionally, Blockchain may be utilised in healthcare in a variety of ways thanks to its highly open, secure standards, which permit a significant drop in healthcare costs and opens up new ways for patients to access medical services. Likewise, these techniques and solutions facilitate medical experts in the early diagnosis of diseases and later in treatments and sustaining pharmaceutical manufacturing. Therefore, in this work, a smart blockchain and AI-enabled system is presented for the healthcare sector that helps to combat the coronavirus pandemic. To further incorporate Blockchain technology, a new deep learning-based architecture is designed to identify the virus in radiological images. As a result, the developed system may offer reliable data-gathering platforms and promising security solutions, guaranteeing the high quality of COVID-19 data analytics. We created a multi-layer sequential deep learning architecture using a benchmark data set. In order to make the suggested deep learning architecture for the analysis of radiological images more understandable and interpretable, we also implemented the Gradient-weighted Class Activation Mapping (Grad-CAM) based colour visualisation approach to all of the tests. As a result, the architecture achieves a classification accuracy of 96%, thus producing excellent results.

7.
Environ Sci Pollut Res Int ; 30(60): 125188-125196, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37453012

RESUMO

Solid waste management (SWM) is a pressing concern and significant research topic that requires attention from citizens and government stakeholders. Most of the responsibility of waste management is on the municipal sector for its collection, reallocation, and reuse of other resources. The daily solid waste production is more than 54,850 tonnes in urban areas and is difficult to manage due to limited resources and different administrative and service issues. New technologies are playing their role in this area but how to integrate the technologies is still a question, especially for developing countries. This paper is divided into two main phases including a detailed investigation and a technological solution. In the first phase, the data is collected by using the qualitative method to investigate and identify the issues related to waste management. After a detailed investigation and results, the gap is identified by using statistical analysis and proposed a technological solution in the second phase. The technology-based solution is used to control and manage waste with a low-cost, fast, and manageable solution. The new sensor-based technologies, cellular networks, and social media are utilized to monitor the trash in the areas. The trash management department receives notification via cellular services to locate the dustbin when the dustbin reaches a maximum level so the department may send a waste collector vehicle to the relevant spot to collect waste. The smart and fast solution will connect all stakeholders in the community and reduce the cost and time and make the collection process faster. The experiment results indicated the issues and effectiveness of the proposed solution.


Assuntos
Resíduos de Alimentos , Internet das Coisas , Eliminação de Resíduos , Gerenciamento de Resíduos , Humanos , Resíduos Sólidos/análise , Eliminação de Resíduos/métodos , Gerenciamento de Resíduos/métodos , Cidades
8.
Sensors (Basel) ; 23(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37299906

RESUMO

Human behavior recognition technology is widely adopted in intelligent surveillance, human-machine interaction, video retrieval, and ambient intelligence applications. To achieve efficient and accurate human behavior recognition, a unique approach based on the hierarchical patches descriptor (HPD) and approximate locality-constrained linear coding (ALLC) algorithm is proposed. The HPD is a detailed local feature description, and ALLC is a fast coding method, which makes it more computationally efficient than some competitive feature-coding methods. Firstly, energy image species were calculated to describe human behavior in a global manner. Secondly, an HPD was constructed to describe human behaviors in detail through the spatial pyramid matching method. Finally, ALLC was employed to encode the patches of each level, and a feature coding with good structural characteristics and local sparsity smoothness was obtained for recognition. The recognition experimental results on both Weizmann and DHA datasets demonstrated that the accuracy of five energy image species combined with HPD and ALLC was relatively high, scoring 100% in motion history image (MHI), 98.77% in motion energy image (MEI), 93.28% in average motion energy image (AMEI), 94.68% in enhanced motion energy image (EMEI), and 95.62% in motion entropy image (MEnI).


Assuntos
Algoritmos , Reconhecimento Automatizado de Padrão , Humanos , Reconhecimento Automatizado de Padrão/métodos
9.
Ultrasonics ; 132: 107017, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37148701

RESUMO

Ultrasound imaging is a valuable tool for assessing the development of the fetal during pregnancy. However, interpreting ultrasound images manually can be time-consuming and subject to variability. Automated image categorization using machine learning algorithms can streamline the interpretation process by identifying stages of fetal development present in ultrasound images. In particular, deep learning architectures have shown promise in medical image analysis, enabling accurate automated diagnosis. The objective of this research is to identify fetal planes from ultrasound images with higher precision. To achieve this, we trained several convolutional neural network (CNN) architectures on a dataset of 12400 images. Our study focuses on the impact of enhanced image quality by adopting Histogram Equalization and Fuzzy Logic-based contrast enhancement on fetal plane detection using the Evidential Dempster-Shafer Based CNN Architecture, PReLU-Net, SqueezeNET, and Swin Transformer. The results of each classifier were noteworthy, with PreLUNet achieving an accuracy of 91.03%, SqueezeNET reaching 91.03% accuracy, Swin Transformer reaching an accuracy of 88.90%, and the Evidential classifier achieving an accuracy of 83.54%. We evaluated the results in terms of both training and testing accuracies. Additionally, we used LIME and GradCam to examine the decision-making process of the classifiers, providing explainability for their outputs. Our findings demonstrate the potential for automated image categorization in large-scale retrospective assessments of fetal development using ultrasound imaging.


Assuntos
Algoritmos , Redes Neurais de Computação , Gravidez , Feminino , Humanos , Estudos Retrospectivos , Aprendizado de Máquina , Ultrassonografia
10.
Micromachines (Basel) ; 14(1)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36677215

RESUMO

Machine-health-surveillance systems are gaining popularity in industrial manufacturing systems due to the widespread availability of low-cost devices, sensors, and internet connectivity. In this regard, artificial intelligence provides valuable assistance in the form of deep learning methods to analyze and process big machine data. In diverse industrial applications, gears are considered a condemning element; many contributing failures occur due to an unexpected breakdown of the gears. In recent research, anomaly-detection and fault-diagnosis systems have been the gears' most contributing content. Thus, in work, we presented a smart deep learning-based system to detect anomalies in an industrial machine. Our system used vibrational analysis methods as a deciding tool for different machinery-maintenance decisions. We will first perform a data analysis of the gearbox data set to analyze the data's insights. By calculating and examining the machine's vibration, we aim to determine the nature and severity of the defect in the machine and hence detect the anomaly. A gearbox's vibration signal holds the fault's signature in the gears, and earlier fault detection of the gearbox is achievable by examining the vibration signal using a deep learning technique. Therefore, we aim to propose a 6-layer autoencoder-based deep learning framework for anomaly detection and fault analysis using a publically available data set of wind-turbine components. The gearbox fault-diagnosis data set is utilized for experimentation, including collecting vibration attributes recorded using SpectraQuest's gearbox fault-diagnostics simulator. Through comprehensive experiments, we have seen that the framework gains good results compared to others, with an overall accuracy of 91%.

11.
Cluster Comput ; : 1-11, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36624887

RESUMO

Rapid development of the Internet of Everything (IoE) and cloud services offer a vital role in the growth of smart applications. It provides scalability with the collaboration of cloud servers and copes with a big amount of collected data for network systems. Although, edge computing supports efficient utilization of communication bandwidth, and latency requirements to facilitate smart embedded systems. However, it faces significant research issues regarding data aggregation among heterogeneous network services and objects. Moreover, distributed systems are more precise for data access and storage, thus machine-to-machine is needed to be secured from unpredictable events. As a result, this research proposed secured data management with distributed load balancing protocol using particle swarm optimization, which aims to decrease the response time for cloud users and effectively maintain the integrity of network communication. It combines distributed computing and shift high cost computations closer to the requesting node to reduce latency and transmission overhead. Moreover, the proposed work also protects the communicating machines from malicious devices by evaluating the trust in a controlled manner. Simulation results revealed a significant performance of the proposed protocol in comparison to other solutions in terms of energy consumption by 20%, success rate by 17%, end-to-end delay by 14%, and network cost by 19% as average in the light of various performance metrics.

12.
IEEE/ACM Trans Comput Biol Bioinform ; 20(4): 2445-2456, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35853048

RESUMO

Recent advancement in biomedical imaging technologies has contributed to tremendous opportunities for the health care sector and the biomedical community. However, collecting, measuring, and analyzing large volumes of health-related data like images is a laborious and time-consuming job for medical experts. Thus, in this regard, artificial intelligence applications (including machine and deep learning systems) help in the early diagnosis of various contagious/ cancerous diseases such as lung cancer. As lung or pulmonary cancer may have no apparent or clear initial symptoms, it is essential to develop and promote a Computer Aided Detection (CAD) system that can support medical experts in classifying and detecting lung nodules at early stages. Therefore, in this article, we analyze the problem of lung cancer diagnosis by classification and detecting pulmonary nodules, i.e., benign and malignant, in CT images. To achieve this objective, an automated deep learning based system is introduced for classifying and detecting lung nodules. In addition, we use novel state-of-the-art detection architectures, including, Faster-RCNN, YOLOv3, and SSD, for detection purposes. All deep learning models are evaluated using a publicly available benchmark LIDC-IDRI data set. The experimental outcomes reveal that the False Positive Rate (FPR) is reduced, and the accuracy is enhanced.

13.
IEEE J Biomed Health Inform ; 27(10): 4660-4671, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36279348

RESUMO

Increasingly serious health problems have made the usage of computed tomography surge. Therefore, algorithms for processing CT images are becoming more and more abundant. These algorithms can lessen the harm of cumulative radiation in CT technology for the patient while eliminating the noise of image caused by dose reduction. However, the mainstream CNN-based algorithms are inefficient when dealing with features in broad regions. Inspired by the large receptive field of transformer framework, this paper designs an end-to-end low-dose CT (LDCT) denoising network based on the transformer. The overall network contains a main branch and dual side branches. Specifically, the overlapping-free window-based self-attention transformer block is adopted on the main branch to realize image denoising. On the dual side branches, we propose double enhancement module to enrich edge, texture, and context information of LDCT images. Meanwhile, the receptive field of network is further enlarged after processing, which is helpful for building model's long-range dependencies. The outputs of the side branches are concatenated for enhancing information and generating high-quality CT images. In addition, to better train the network, we introduce a compound loss function including mean squared error (MSE), multi-scale perceptual (MSP), and Sobel-L1 (SL) to make the denoised image closer to the targeted norm-dose CT (NDCT) image. Lastly, we conducted experiments on two clinical datasets including abdomen, head, and chest LDCT images with 25%, 25%, and 10% of the full dose, respectively. The experimental results demonstrated that the proposed DEformer achieved better denoising performance than the existing algorithms.


Assuntos
Algoritmos , Tomografia Computadorizada por Raios X , Humanos , Doses de Radiação , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X/métodos , Processamento de Imagem Assistida por Computador/métodos
14.
Sensors (Basel) ; 22(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36501937

RESUMO

For the monitoring and processing of network data, wireless systems are widely used in many industrial applications. With the assistance of wireless sensor networks (WSNs) and the Internet of Things (IoT), smart grids are being explored in many distributed communication systems. They collect data from the surrounding environment and transmit it with the support of a multi-hop system. However, there is still a significant research gap in energy management for IoT devices and smart sensors. Many solutions have been proposed by researchers to cope with efficient routing schemes in smart grid applications. But, reducing energy holes and offering intelligent decisions for forwarding data are remain major problems. Moreover, the management of network traffic on grid nodes while balancing the communication overhead on the routing paths is an also demanding challenge. In this research work, we propose a secure edge-based energy management protocol for a smart grid environment with the support of multi-route management. It strengthens the ability to predict the data forwarding process and improves the management of IoT devices by utilizing a technique of correlation analysis. Moreover, the proposed protocol increases the system's reliability and achieves security goals by employing lightweight authentication with sink coordination. To demonstrate the superiority of our proposed protocol over the chosen existing work, extensive experiments were performed on various network parameters.

15.
Big Data ; 10(6): 479-480, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36367698
16.
EURASIP J Wirel Commun Netw ; 2022(1): 111, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36411764

RESUMO

To assist sixth-generation wireless systems in the management of a wide variety of services, ranging from mission-critical services to safety-critical tasks, key physical layer technologies such as reconfigurable intelligent surfaces (RISs) are proposed. Even though RISs are already used in various scenarios to enable the implementation of smart radio environments, they still face challenges with regard to real-time operation. Specifically, high dimensional fully passive RISs typically need costly system overhead for channel estimation. This paper, however, investigates a semi-passive RIS that requires a very low number of active elements, wherein only two pilots are required per channel coherence time. While in its infant stage, the application of deep learning (DL) tools shows promise in enabling feasible solutions. We propose two low-training overhead and energy-efficient adversarial bandit-based schemes with outstanding performance gains when compared to DL-based reflection beamforming reference methods. The resulting deep learning models are discussed using state-of-the-art model quality prediction trends.

18.
Environ Dev Sustain ; : 1-16, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35993085

RESUMO

The idea of sustainability aims to provide a protected operating environment that supports without risking the capacity of coming generations and to satisfy their demands in the future. With the advent of artificial intelligence, big data, and the Internet of Things, there is a tremendous paradigm transformation in how environmental data are managed and handled for sustainable applications in smart cities and societies. The ongoing COVID-19 (Coronavirus Disease) pandemic maintains a mortifying impact on the world population's health. A continuous rise in the number of positive cases produced much stress on governing organizations worldwide, and they are finding it challenging to handle the situation. Artificial Intelligence methods can be extended quite efficiently to monitor the disease, predict the pandemic's growth, and outline policies and strategies to control its transmission or spread. The combination of healthcare, along with big data, and machine learning methods, can improve the quality of life by providing better care services and creating cost-effective systems. Researchers have been using these techniques to fight against the COVID-19 pandemic. This paper emphasizes on the analysis of different factors and symptoms and presents a sustainable framework to predict and detect COVID-19. Firstly, we have collected a data set having different symptoms information of COVID-19. Then, we have explored various machine learning algorithms or methods: including Logistic Regression, Naive Bayes, Decision Tree, Random Forest Classifier, Extreme Gradient Boost, K-Nearest Neighbour, and Support Vector Machine to predict and detect COVID-19 lab results, using different symptoms information. The model might help to predict and detect the long-term spread of a pandemic and implement advanced proactive measures. The findings show that the Logistic Regression and Support Vector Machine outperformed from other machine learning algorithms in terms of accuracy; algorithms exhibit 97.66% and 98% results, respectively.

19.
IET Syst Biol ; 16(3-4): 120-131, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790076

RESUMO

Malignancies and diseases of various genetic origins can be diagnosed and classified with microarray data. There are many obstacles to overcome due to the large size of the gene and the small number of samples in the microarray. A combination strategy for gene expression in a variety of diseases is described in this paper, consisting of two steps: identifying the most effective genes via soft ensembling and classifying them with a novel deep neural network. The feature selection approach combines three strategies to select wrapper genes and rank them according to the k-nearest neighbour algorithm, resulting in a very generalisable model with low error levels. Using soft ensembling, the most effective subsets of genes were identified from three microarray datasets of diffuse large cell lymphoma, leukaemia, and prostate cancer. A stacked deep neural network was used to classify all three datasets, achieving an average accuracy of 97.51%, 99.6%, and 96.34%, respectively. In addition, two previously unreported datasets from small, round blue cell tumors (SRBCTs)and multiple sclerosis-related brain tissue lesions were examined to show the generalisability of the model method.


Assuntos
Aprendizado Profundo , Neoplasias da Próstata , Algoritmos , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos/métodos
20.
Entropy (Basel) ; 24(6)2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35741563

RESUMO

Recently, the rapid development of the Internet of Things has contributed to the generation of telemedicine. However, online diagnoses by doctors require the analyses of multiple multi-modal medical images, which are inconvenient and inefficient. Multi-modal medical image fusion is proposed to solve this problem. Due to its outstanding feature extraction and representation capabilities, convolutional neural networks (CNNs) have been widely used in medical image fusion. However, most existing CNN-based medical image fusion methods calculate their weight maps by a simple weighted average strategy, which weakens the quality of fused images due to the effect of inessential information. In this paper, we propose a CNN-based CT and MRI image fusion method (MMAN), which adopts a visual saliency-based strategy to preserve more useful information. Firstly, a multi-scale mixed attention block is designed to extract features. This block can gather more helpful information and refine the extracted features both in the channel and spatial levels. Then, a visual saliency-based fusion strategy is used to fuse the feature maps. Finally, the fused image can be obtained via reconstruction blocks. The experimental results of our method preserve more textual details, clearer edge information and higher contrast when compared to other state-of-the-art methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...